Climate Action Reserve
September 21, 2010
Nitric Acid Workshop
Agenda

- About ClimeCo, Nitric Acid Services
- First Step - Technology Selection
- First CAR Nitric Acid Project – Overview
- ERRATA 1
- Critical USEPA Part 75 Requirements
- Questions and Answers
About ClimeCo
Nitric Acid Sector
ClimeCo’s Role in the CAR Protocol

ClimeCo selected to participate in the CAR N₂O Protocol development process. Workshop members included:

ClimeCo
The Fertilizer Institute
Orica Canada Inc
Terra Industries Inc.
California Air Resources Board
U.S. EPA
DNV
Blue Source, LLC
N. Serve Environmental Services
Technology Selection
Technology Selection – Protocol accepts secondary and tertiary

- Critical to understand the plant design
- Some nitric acid plants (NAPs) are best suited for secondary while some NAPs are best suited for tertiary.
- Secondary – Understand basket retrofit requirements and system pressure drop.
- Tertiary – Understand total installed cost (TIC) of project. Preliminary engineering is essential.
First CAR Listed Nitric Acid Project
El Dorado Nitrogen Project – Baytown Texas

- Dual Pressure Plant
- Secondary Abatement
- BASF Catalyst Selection
- Typical Campaign Length: 6-9 months
- Historical Campaigns: 4/28/06 to 2/17/09
- Baseline Campaign: 11/01/09 to 6/27/10
- Project Campaign Started: 7/1/10
- Project Verifier – Ruby Canyon Engineering
El Dorado Nitrogen Project Schedule

- **Project Schedule**
 - September 2009: ClimeCo engaged to evaluate FTIR CEM and perform N\textsubscript{2}O RATA. RA exceeded Part 75 Requirements
 - November 1, 2009: Baseline campaign starts
 - December 2, 2009: CAR Protocol v1 issued
 - May 27, 2010: CLcap threshold met
 - June 10, 2010: Baseline verification (on-site) begins
 - June 27, 2010: Baseline campaign ends
 - June 29-30, 2010: Installation of BASF catalyst
 - August 25, 2010: Verification of baseline complete
 - October 2010: mid campaign verification
Installation (June 29 and June 30th)
• **Historical Campaign Data**

 - Hourly process data required for oxidation temperature, pressure, ammonia to air ratio, and HNO$_3$ production
 - Removed all data for non-operating conditions (OH < 1)
 - Removed upper and lower 2.5% (95 percentile)
 - Established historical operating limits (upper and lower)
 - Calculated CLcap – average annual production from the 5 consecutive campaigns during the last 5-years. [applied to EFbl]
 - Calculated HNO$_3$max – historical maximum annual average total output (100% nitric) (HNO$_3$/hr) [applied to HNO$_3$max,scaled]
Important Concepts in Protocol

• **Baseline Emission Factor**
 - Manually calculated Bias Adjustment Factor (BAF) and applied
 - Removed all data with OH < 1
 - Added function to summarize accumulated HNO₃ production and capped data fields to the point when CLcap was met
 - Calculated 95% confidence levels NCSG and VSG [N₂O concentration (mg/m³) and air volumetric flow rate (m³/hr)]
 - Removed all data outside of historical operating ranges
 - Approximate data loss after “hair cuts” – 12%
 - Calculated EFbi = (BEBC) tN₂O/tHNO₃BC
• **Project Emission Factor / Project ERs**

- Follow same process as done for Emission Factor Baseline except do not apply CL_{cap}.

- Project emission factor (EF_p) = PE_n/HNO_{3n}

- $ERs = (EF_{BL} - EF_p) \times HNO_{3ER} \times GWP_{N2O}$
 - $HNO_{3ER} = $ quantify of HNO_3 corresponding to NCSG and VSG values used to calculate total N_2O or
 - $HNO3_{max, scaled} = HNO3_{max} \times OH$ for project campaign, whichever is less.
Project commenced prior to Protocol Publication, resulting in two variance requests:

- Variance 1 – Quarterly Linearity Check
- Variance 2 – Flow Meter (7-day drift, daily calibration, daily flow interference)
Key ERRATA / Clarifications

• ERRATA
 - Execution of Attestation of Title
 - New term – HNO3max,scaled
 - Equation 5.4 – Variables modified to include project campaign “n”
 - Linearity Check / Cylinder Gas Audits

• Clarifications
 - Calculation and application of HNO3max
 - Calculation of Ammonia to Air Ratio
 - Statistical analysis of historical operating data
 - Statistical comparison of permitted and baseline operating conditions
 - System installation and certification requirements (existing CEMs)
 - Frequency of test (existing CEMs)
• Clarifications
 - Quarterly leak checks for mass flow meters
 - Quarterly flow to load comparisons
Critical USEPA Part 75 Requirements
N₂O Analyzer Types

- **Non Dispersive Infrared (NDIR)**
 - Less versatile
 - ✓ CH₄, C₃H₈, CO, CO₂, N₂O, NOₓ, SO₂
 - Less expensive
- **Fourier Transform Infrared (FTIR)**
 - More versatile
 - ✓ All molecules except O₂, N₂ and H₂
 - More expensive
 - ✓ More expensive calibration audits
Mass Flow Meters

• Mass flow meters

75 percent of the flow meters installed in industry are not performing satisfactorily…

- Designed to USEPA RM 2
- Location is critical – turbulent vs. laminar flow
- Orifice and hotwire applications
CAR Protocol requires more stringent CEMS audit specifications and additional certification tasks

- Quarterly and annual certification procedures are similar, but audit criteria are more stringent
 - Quarterly linearity criteria reduced from 15% to 5% of audit value (Part 75, Appendix A, Section 3.2)
 - RATA criteria from 20% to 10%/7.5% for a bi-annual cert./annual cert. (Part 75, Appendix A, Section 3.3)
• New certification activities are also required:

  DAHS verification test
  Cycle time test
  Bias test
  Linearity check
  7 day CEMS drift check

• Daily CEMS out-of-control calibration criteria tightened - 5% versus 10% for single N₂O daily calibration (Part 75, Appendix A, Section 2.1)

• Volumetric flow meter certification now required:
Upgrades to existing CEMS DAHS required

- CEMS DAHS must incorporate missing emission data substitution routines for every hour of missing data (Part 75, Subpart D)
 - Substituted data are determined based on CEMS data availability. The more data missing, the higher the missing emission data default

- DAHS must apply conservative bias adjustment factors (BAF) to mass emission rate data where applicable (Part 75, Appendix A, Section 7.6)
 - If absolute difference between reference method and facility CEMS exceeds confidence coefficient (cc) then bias test is failed and BAF required to be applied
Questions and Answers
CLIMECo
The Low Carbon Technology Company

William Flederbach
Executive Vice President
Phone: (305) 962-1008
E-mail: wflederbach@climecocorp.com

Bank of America Tower at International Place, 100 Southeast Second Street, 36th Floor
Miami, FL 33131
Tel: 305 299 1188 – Fax: 305 704 3822 – info@climecocorp.com