Fertilizer Management Protocol Stakeholder Meeting Ontario & Quebec Adaptation April 6, 2017 #### Agenda - 1. Background & Introductions - 2. Process Overview - 3. Candidate Protocol Review - 4. Stakeholder Questions/Discussion - 5. Next Steps Item 1 ### **BACKGROUND** #### Background - Ontario & Quebec have retained the Reserve and Partners to develop 14 offset project protocols to support cap-and-trade - 1. Landfill Gas Destruction - 2. ODS Destruction - 3. Mine Methane Destruction - 4. Efficient Refrigeration Systems - 5. Afforestation/Reforestation - 6. Forest (improved forest management, avoided conversion) - 7. Urban Forest - 8. Organic Waste Digestion (expected to be combined with Livestock Manure) - 9. Livestock Manure - 10. Livestock Enteric (was originally combined with livestock manure) - 11. Organic Waste Management (composting) - 12. Conservation Cropping - 13. Fertilizer Management - 14.Grassland ### Background - MOECC = Ontario Ministry of Environment and Climate Change - MDDELCC = Quebec Ministry of Sustainable Development, Environment, and Fight Against Climate Change #### Climate Action Reserve - Nonprofit founded in 2001 - Developed GHG inventory & verification protocols for commercial and industrial entities - Operated a public registry for hundreds of entities in California - Launched online offset project registry in 2008 - Developed or adapted 18 project protocols for the US and Mexico - Work directly informed the CA and QC compliance protocols - Registered hundreds of voluntary and compliance projects, generating >87M tCO₂e in GHG reductions - <u>Partners</u>: Viresco Solutions, Brightspot Climate, Cap-Op Energy, Green Analytics, and EcoResources #### Viresco Solutions - Environmental consulting firm working in agriculture, bioenergy and agri-food sectors - Vision: "Mainstream Sustainability" #### OUR **SOLUTIONS** # Fertilizer Management Protocol Adaptation Team (PAT) | Organizations | Names | |-------------------------------|--| | Viresco Solutions | Karen Haugen-Kozyra (Fertilizer Management
Team Lead and Technical Coordinator for
Project) Candace Vinke Alicia Klepfer | | Brightspot Climate | Aaron Schroeder (Assistant Project Director)Michelle Stelmach | | Climate Action Reserve | Teresa Lang | | EcoResources | Mathieu DumasNathan DeBaets | # Fertilizer Management Technical Task Team (TTT) | Name | Title | Organization | |---------------------------|--------------------|----------------------------------| | Andrew VanderZaag | Research Scientist | Agriculture and Agri-Food Canada | | Brian McConkey | Research Scientist | Agriculture and Agri-Food Canada | | Claudia Wagner-
Riddle | Professor | University of Guelph | | Devon Worth | Technician | Agriculture and Agri-Food Canada | | Keith Reid | Soil Scientist | Agriculture and Agri-Food Canada | | Mario Tenuta | Professor | University of Manitoba | | Reynald Lemke | Research Scientist | Agriculture and Agri-Food Canada | # Fertilizer Management Technical Task Team | Name | Title | Organization | |-----------------|--|--| | Len Kryzanowski | Director | Alberta Agriculture and Forestry | | Tom Bruulesma | Phosphorus Program Director | International Plant Nutrition Institute (IPNI) | | Cliff Snyder | Nitrogen Program Director | International Plant Nutrition Institute (IPNI) | | David Coates | Project Manager | MOECC | | Dushan Jojkic | Senior Program Advisor | MOECC | | Jake Munroe | Soil Fertility Specialist –
Field Crops | OMAFRA | | John Hutchison | Senior Policy Advisor | MOECC | # Fertilizer Management Technical Task Team | Name | Title | Organization | |--------------------|--|---| | Marc-André Ouellet | Direction de l'agroenvironnement et du développement durable, Direction générale du développement et de l'aménagement du territoire agricole | Ministère de l'Agriculture
de l'Alimentation et des
Pêcheries (MAPAQ) | | Shelley Hyatt | Senior Analyst | MOECC | | Sophie Houplain | Direction du marché du carbone, Direction générale de la réglementation carbone et des données d'émission | MDDELCC | | Sara Peckford | Senior Policy Advisor | OMAFRA | # Fertilizer Management Protocol Stakeholder Team - Targeted group to provide feedback during the adaptation process - >50 stakeholders from diverse sectors - Government - Industry - Consulting - Academia - NGOs Item 2 # **PROCESS OVERVIEW** #### **Process Overview** - High level review of all fertilizer protocols - Narrow down list to 1-3 candidate protocols as starting point for adaptation - Stakeholders asked to review and comment on candidate list & short list - All protocols will use a common template - Key issues to be identified prior to drafting - Stakeholder drafts will incorporate feedback from Technical Task Team (TTT) - After Stakeholder review, additional comments/feedback will be reviewed and incorporated ### Tentative Work Plan | Timeline (expected) | Task | |--|--| | February | Protocol Adaptation Team (PAT) worked with Ministries to develop task teams and coordinate outreach | | March 16 th | Initial meeting (webinar) of held with TTT. PAT outlined process, presented protocol candidate list, outlined key issues and next steps. | | April 3 rd | Short list of candidate protocols & initial screening sent to TTT | | April 3 rd to 7 th | TTT reviewed screened protocols and provided feedback | | April 6 th | Initial meeting (webinar) with the broader group of interested stakeholders. TTT members encouraged to attend. | | April 13 th | Stakeholder feedback on candidate list due | | April 14 th | Protocol candidate finalized and posted | | April 15 th | PAT to begin drafting protocol | # Process Flow Diagram Item 3 #### **CANDIDATE PROTOCOLS** #### Task Ahead of Us - Task if possible, protocol applies to all of Canada - Follow Western Climate Initiative Offset Criteria (2010) - Need to assess regulatory requirements in each province (additionality) - May need additional definitions terms consistent - Update language based on ON / QC Offsets regulation - Refresh equations, tables and diagrams Canadian science and alignment with National Emissions Inventory - Standardize emission factors - Align with industry standards (4R framework) ### Terminology | Protocol
Term | Ontario | Quebec | |------------------------|--|--| | "Project" | Offset Initiative | Project | | "Ministry" | MOECC | MDDELCC | | "Regulation" | Regulation concerning The Cap and Trade Program, made under the Climate Change Mitigation and Low-Carbon Economy Act | Regulation respecting a cap-
and-trade system for
greenhouse gas emission
allowances, made under the
Environment Quality Act | | "Project
Developer" | Offset Initiative Operator and/or Offset Initiative Sponsor, as appropriate | Project Promoter | Each Ministry may make their own final edits when the adapted protocols are prepared for formal regulatory adoption # Candidate Protocols - TTT | Protocol/
Methodology | Voluntary
or
Compliance | Program | Jurisdiction | Link | |---|-------------------------------|---|---|---| | Agricultural Nitrous Oxide Emission Reductions (NERP) ¹ | Compliance | Specified
Gas Emitters
Regulation | Alberta /
Canada | http://aep.alberta.ca/climate-change/guidelines-
legislation/specified-gas-emitters-
regulation/documents/ProtocolNitrousOxideReductions-
Sep2015.pdf | | Nitrogen Management
Project Protocol ² | Voluntary | Climate
Action
Reserve | United States
(North Central
Region only) | http://www.climateactionreserve.org/how/protocols/nitrogen-management/ | | Quantifying N ₂ O
Emissions Reductions in
Agricultural Crops
through Nitrogen
Fertilizer Rate Reduction ² | Voluntary | Verified
Carbon
Standard | United States | http://database.v-c-s.org/methodologies/quantifying-n2o-emissions-reductions-agricultural-crops-through-nitrogen-fertilizer | | Reduced Use of Nitrogen
Fertilizer on Agricultural
Crops ² | Voluntary | American
Carbon
Registry | United States | http://americancarbonregistry.org/carbon-
accounting/standards-methodologies/emissions-
reductions-through-reduced-use-of-nitrogen-fertilizer-on-
agricultural-crops | | Changes in Fertilizer Management (in Scientific Peer Review) ³ | Voluntary | American
Carbon
Registry | United States /
Global | http://americancarbonregistry.org/carbon-
accounting/standards-methodologies/emissions-
reductions-through-changes-in-fertilizer-management | ### Scoring Guide # Protocols were scored based on individual criteria and then weighted by overall category 1 = this protocol is useful for this item 0 = this protocol is somewhat useful for this item, but needs further work -1 = this protocol either doesn't address this item, or addresses it very poorly. # Offset and Project Definition | Protocol | Alberta NERP | CAR Nitrogen Management | |-------------|---|---| | Description | Comprehensive 4R program with full discussion of SSRs Offset and land ownership need to be fully defined Projects only applicable in Alberta Based on IPCC Tier 2 methodology for EcoDistricts across Canada | Reduced N rate only Full discussion of SSRs Offset and land ownership need to be fully defined Limited to corn crops in the North Central US Based on adapted MSU-EPRI Tier 2 methodology | | Score | 1.0 | -0.3 | # Offset and Project Definition Cont'd | VCS Rate Reduction | ACR Reduced Use of N
Fertilizer | ACR Changes in Fertilizer Management | |---|---|--| | Reduced N rate only Only direct and indirect fertilizer emissions are included as SSRs No discussion of ownership Projects only applicable in the US | Reduced N rate only Only direct and indirect fertilizer emissions are included as SSRs No discussion of ownership Global project applicability | Comprehensive 4R program with full discussion of SSRs Offset and land ownership need to be fully defined Based on DNDC model Projects applicable wherever DNDC has been validated | | -1.0 | -0.5 | 1.0 | # Quantifiable | Protocol | Alberta NERP | CAR Nitrogen Management – MSU-EPRI | |-------------|--|---| | Description | All SSRs are included but only on-site emissions are under the control of the PD Leakage is not explicitly addressed but is accounted for in ISO life cycle assessment Mass-based accounting based on Canada's NIR Reduction Modifiers ensure conservativeness Dynamic Baselines allow flexibility | All SSRs are included but only on-site emissions (primary effects) are under the control of the PD Leakage assessment based on county yield values MSU-EPRI Tier 2 emission factors are only applicable to Corn Belt Structural uncertainty is calculated General conservative compliance standards | | Score | 0.9 | 0.8 | # Quantifiable Cont'd | VCS Rate Reduction – MSU-EPRI | ACR Reduced Use of N
Fertilizer – MSU-EPRI | ACR Changes in Fertilizer
Management – DNDC | |--|---|---| | Only direct and indirect emissions from fertilizer are included No assessment of leakage Can use IPCC Tier 1 or IPCC Tier 2 MSU-EPRI methodology Only applicable in the US Uncertainty and conservative applied through IPCC good practice | Only direct and indirect emissions from fertilizer are included No assessment of leakage Can use IPCC Tier 1 or IPCC Tier 2 (MSU-EPRI methodology in US) Can be adapted to any location Uncertainty and conservative applied through IPCC good practice | All SSRs are included but only on-site emissions (primary effects) are under the control of the PD Leakage calculation and deduction using yield values DNDC model quantification Structural uncertainty from modeling included Overall conservative approach to calculations | | 0.2 | 0.3 | 0.9 | # Additional | Protocol | Alberta NERP | CAR Nitrogen Management | |-------------|--|--| | Description | 3 baselines allow flexibility for lack of data, but ensure conservative quantification Conventional baseline is project specific using 3 years of site-specific historical data Dynamic baseline 1 uses advisor assessment of historic local practices with 5% discount Dynamic baseline 2 uses rolling averages from historical data with 10% discount | Projects must meet Performance Standard Test and Legal Requirements Test 5+ year historic baseline (with at least 3 years of corn) using conservative regional emission factors Regional coefficients based on NASS data: only applicable in the Corn Belt | | Score | 1.0 | 0.5 | #### Additional Cont'd | VCS Rate
Reduction | ACR Reduced Use of N
Fertilizer | ACR Changes in Fertilizer Management | |---|---|--| | Performance Method Yield-goal calculation Approach 1: 5 or 6 year historic site-specific baseline Approach 2: county average using NASS data – US only | Practice-Based Performance
Standard ACR's 3 prong test Yield-goal calculation Category 1: Corn Belt only, site –
specific 5 or 6 year baseline,
using MSU-EPRI Category 2: global projects using
Tier 1 defaults Category 3: global projects, site-
specific 5 or 6 year baseline,
using Tier 2 emission factors | Common Practice Assessment ACR's 3 prong test (regulatory, common practice, and barriers) Approach 1: site-specific baseline using 5 years of historical data Approach 2: Common practice baseline with more than just rate for <5% adoption in the reference region Approach 3: common adoption (of non-rate reduction practices) >5% in reference region, must use historical site specific baseline | | 1.0 | 0.8 | 1.0 | #### Permanent - All five protocols: scored 1.0 - Nitrous oxide reductions are automatically considered permanent as they occur immediately #### Verifiable - Alberta, CAR, VCS, and ACR Reduction Protocols: scored 1.0 - Verification is required; explicit records requirements stated to support quantification and assertion - ACR Changes in Fertilizer Management: scored 0 - Verification is required; explicit records requirements stated to support quantification and assertion - However, verification of DNDC applicability and proper use of the model lies with the PD and assumes they understand the model completely #### Other Criteria - Assessment of negative environmental or socioeconomic impacts - Alberta, CAR, ACR Changes: Scored 1.0 - Leaching and volatilization are included - Economic impacts are included through determination of leakage effects - VCS, ACR Reduction: Scored 0 - Leaching and volatilization are included - Economic impacts are not assessed through leakage or otherwise # Overall Score | Alberta NERP | CAR Nitrogen Management | |--------------|-------------------------| | 5.9 | 4.1 | | | | ACR Changes in Fertilizer Management | |-----|-----|--------------------------------------| | 2.2 | 2.6 | 4.9 | Item 4 # STAKEHOLDER QUESTIONS & DISCUSSION Item 5 # **NEXT STEPS** #### Submit comments - Stakeholder Team to review candidate protocols and submit comments to the Reserve no later than: - Thursday, April 13th (end of day) - candace@virescosolutions.com - Any comments related to the regulation should be directed to the appropriate Ministry ### Next meeting - Next Stakeholder Team Meeting (to review draft protocol): - Mid-June - Watch for email announcement with registration link - Sharing documents and drafts with stakeholders on CAR website #### **Contact Information** #### Karen Haugen-Kozyra President, Viresco Solutions & CCP Team Lead Karen@virescosolutions.com (780) 270-0525 #### Teresa Lang Senior Policy Manager, Climate Action Reserve TLang@climateactionreserve.org (213) 891-6932