

Refrigeration Systems Protocol Stakeholder Team Meeting

Ontario & Quebec Adaptation February 12th, 2018

Agenda

- 1. Changes to draft protocol & questions for stakeholders
- 2. Next steps

Work since last Stakeholder meeting

- Incorporated stakeholder comments to protocol text
- Default Baseline Emission Factors
 - Charge size ratios (kg/kW)
 - Blended GWP for baseline refrigerants
 - Narrative of work on Appendix A
- Added references throughout text

Default Baseline Emission Factors

- Refrigeration system categories
 - Stand-alone commercial refrigeration
 - Centralized commercial refrigeration
 - Centralized industrial refrigeration (food processing)
 - Centralized industrial refrigeration (other)
 - -Commercial or industrial chillers

Q1. Baseline for Secondary loop systems

- Two types of centralized refrigeration systems (Table 4.3)
 - Direct Expansion
 - Secondary Loop System (Indirect)
- What type of system should we assume would have been the baseline scenario for a secondary loop system?
 - Option 1: Secondary loop system
 - Option 2: Direct Expansion system

Comparison of table 4.3 options

Option 1: Assume that a secondary loop system would have been the baseline scenario.

Implications

- The difference in the project scenario would be the type and charge of refrigerant used.
- With this option the project would potentially generate less emission reduction credits.

Category		ODSHAR	Annual Emission Factor (kgCO ₂ e/kW/yr)		
		deadline	Pre-deadline	Post-deadline	
Centralized commercial-	Medium temperature	1/1/2020	801	616	
Direct expansion	Low temperature	1/1/2020	1574	1210	
Centralized commercial - Indirect (Secondary loop)	Medium temperature	1/1/2020	229	176	
	Low temperature	1/1/2020	343	264	

Comparison of table 4.3 options

Option 2: Assume that a Direct Expansion System would have been the baseline scenario.

- Implications:
 - New secondary loop systems
 would generate significantly more
 GHG emissions than in Option 1.
 - Potentially not conservative,
 unless DX systems really are BAU

Category		ODSHAR	Annual Emission Factor (kgCO2e/kW/yr)		
		deadline	Pre-deadline	Post- deadline	
Centralized	Medium temperature	1/1/2020	801	616	
commercial	Low temperature	1/1/2020	1574	1210	

Development of Default Baseline EF

 The default baseline emission factors were derived using the following equation:

$$EF = (Charge\ ratio) \times (Leak\ rate) \times (Blended\ GWP)$$

Calculation example: Stand alone systems

Category		Charge Leak Ratio		GWP		ODSHAR	Annual Emission Factor (kgCO2e/kW/yr)	
		(kg/kW)	Rate	Pre- Deadline	Post- Deadline	Deadline	Pre- Deadline	Post- Deadline
Stand along	Medium temperature	0.23	10%	2861	1400	2020	66	32
Stand alone	Low Temperature	1.5	10%	2861	1500	2020	429	225

Data sources

Charge ratio

-ARB 2009 inventory of refrigeration and A/C emissions

Leak rate

Canadian National Inventory Report

Blended GWP

- Pre-deadline: ODSHAR Amendments (2017) BAU assumptions
- Post-deadline: Regulatory limits from ODSHAR Amendments

Q2. Baseline leak rate

Protocol leak rate (NIR): 10%

Category		Charge Ratio (kg/kW)	Leak	GWP		ODSHAR	Annual Emission Factor (kgCO2e/kW/yr)	
			Rate	Pre- Deadline	Post- Deadline	Deadline	Pre- Deadline	Post- Deadline
Stand alone	Medium temperature	0.23	10%	2861	1400	2020	66	32
systems	Low Temperature	1.5	10%	2861	1500	2020	429	225

- US EPA Green Chill program leak rates: 20-25%
- IPCC ranges (Canada would be at the low end):
 - Stand-alone commercial refrigeration equipment: 1-15%
 - Medium and large commercial refrigeration equipment: 10-35%
 - Industrial refrigeration, including food processing and cold storage: 7-25%
 - Chillers: 2-15%
- Which should be the most appropriate leak rate considering conservativeness and appropriateness to Canada?

Blended Global Warming Potential

 Blended GWP values for project start dates prior to ODSHAR deadlines were derived using the following equation:

Blended GWP =
$$\sum_{i}$$
 [(Refrigerant market share)_i × GWP_i]

Calculation example: Stand alone systems

Refrigeration system category	BAU refrigerant	Market share	100-Year GWP	Blended GWP
Stand-alone refrigeration	R-404A	25%	3922	
	R-507A	25%	3985	2064
	R-407A	25%	2107	2861
	HFC-134a	25%	1430	

Q3. Market shares of baseline (BAU) refrigerants

Refrigeration system category	BAU refrigerant	Market share	100-Year GWP	Blended GWP
	R-404A	25%	3922	
Stand-alone	R-507A	25%	3985	2064
refrigeration	R-407A	25%	2107	2861
	HFC-134a	25%	1430	
	R-404A	25%	3922	
Centralized	R-507A	25%	3985	2004
refrigeration	R-407A	25%	2107	2861
	HFC-134a	25%	1430	
	R-404A	20%	3922	
Chillers	R-507A	20%	3985	
	R-407C	20%	1774	2428
	HFC-134a	20%	1430	
	HFC-245fa	20%	1030	

BAU refrigerant market share

- No information available from ECCC about BAU market share assumptions
- Using NIR market share for installed commercial refrigerant results in very high blended GWP
- No other data source identified on BAU market share
- Options:
 - 1. Apply the ODSHAR regulatory limits across all projects
 - 2. Use simple average of BAU refrigerants
 - 3. Choose lowest GWP value
 - 4. Identify a suitable data source for market share

Item 4
NEXT STEPS

Next steps

- Stakeholders to review draft protocol and submit comments to the Reserve no later than:
 - -Friday, February 23rd (end of day)
 - -bzavariz@climateactionreserve.org
- Final draft protocol targeted to be submitted to Ministries March 9

Max DuBuisson

Policy Director max@climateactionreserve.org (213) 785-1233

Beatriz Zavariz

Policy Associate bzavariz@climateactionreserve.org (213) 542-0298